Exhibit #4

SUBSURFACE EXPLORATION AND GEOTECHNICAL ENGINEERING EVALUATION AT

Rockdale County Event Center Addition 2455 Costley Mill Road Conyers, Georgia 30013

Submitted to

Mr. Michael Robinson Senior Capital Projects Manager Department of General Services Rockdale County PO Box 289 Conyers, GA 30012

January 2024

MEG 302287.61

January 31, 2024

Mr. Michael Robinson Senior Capital Projects Manager Department of General Services Rockdale County PO Box 289 Conyers, GA 30012

Re: Subsurface Exploration and Geotechnical Engineering Evaluation Rockdale County Event Center Addition- 2599 Salem Church Road, Conyers, GA 30013 Matrix Engineering Group Project Number MEG-302287.61

Dear Mr. Robinson:

Matrix Engineering Group, Inc. has completed the geotechnical exploration and evaluation for the proposed Rockdale County Event Center Addition project located at 2599 Salem Church Road in Conyers, Georgia 30013.

The scope of this work included drilling a total of five (5) soil test borings within the area planned for the development and providing the findings and recommendations regarding the geotechnical aspects of the proposed project.

This work was performed in general accordance with Matrix Proposal Number 121923-1, dated December 19, 2023, and the subsequent authorization to proceed by Mr. Marcello Banes on January 3rd, 2024.

Introduction

The site is located at 2599 Salem Church Road in Conyers, Georgia 30013. It is at the southeastern end of the existing Event Center Building. The ground cover at the site is vegetation and topsoil. We noted rock outcrops and pile of rocks in the vicinity of the site.

Based on our site visit and the Grading Plan dated 4/02/2018, the site slopes down gently in an easterly direction from the southeastern end of the existing building at an approximate elevation of 679 feet Mean Sea Level (MSL) to a Grass Swale at an approximate elevation of 676 feet MSL.

We understand that a 10' x 50' addition is being proposed at the southeastern end of the existing Event Center Building. According to the Grading Plan dated 4/2/2018, the Finished Floor Elevation of the existing building is 680 feet MSL.

Exploration and Testing Program

The geotechnical exploration program consisted of the drilling and sampling of a total of five (5) soil test borings within the proposed addition area. The approximate locations of the soil test borings are shown on Figure 1 presented in the Appendix of this report. For exact locations, the owner may elect to survey the boring locations. Matrix should be informed of any deviations in order to evaluate and modify our recommendations, if necessary.

The test borings were performed utilizing a track mounted with CME 75 drill rig equipped with an automatic hammer in general accordance with ASTM D1586 standards. The planned depths of the borings ranged between 10 feet to 20 feet BGS. Borings were advanced by auguring through the soils with continuous flights of 3 ¹/₄-inch ID augers. At regular intervals, soil samples were obtained through the center of the auger flights with a standard 1.4-inch I.D., 2-inch O.D., split-tube sampler. The sampler is first seated 6 inches to penetrate loosened strata before sampling, and then driven an additional foot with blows of a 140-pound hammer falling 30 inches. The number of hammer blows required to drive the sampler the final foot is recorded and is designated as the Standard Penetration Resistance (N-Value). The penetration resistance, when properly evaluated, is an index of the soil strength, consistency and ability to support foundations.

Representative soil samples were obtained using split-spoon sampling techniques. The samples were classified in the field in general accordance with ASTM D2488 (Visual-Manual Procedure for Description of Soils). Representative portions of the soil samples were placed in sealable, plastic bags and transported to our laboratory. During the field operations, Matrix staff maintained a continuous log of the subsurface conditions including changes in the stratigraphy and any observed groundwater levels. Soil descriptions and penetration resistance values are presented graphically on the Soil Boring Records included in the Appendix of this report.

All borings were backfilled with the soil cuttings by Matrix Engineering staff at the conclusion of the field work. Some consolidation of the backfilled soil column should be expected over time.

Subsurface Conditions

The subsurface conditions were characterized by visual-manual examination of the soils obtained from the split-spoon sampler and observation from the auger cutting during the drilling and auguring operations. The soil boring logs, designated as B-1 to B-5, are provided in the Appendix of this report.

The subsurface conditions within the drilled borings are characterized as follows:

Man-made fill was encountered within the top 1 foot to 4.5 feet below the existing ground surface (BGS). The man-made fill consisted of Loose, wet, Silty Sand (SM) with hairline roots and gravel. The standard penetration resistance within the fill was 6 blows per foot (bpf).

Residual soils are those which have weathered in place from the parent rock. Residual soils were encountered beneath the fill and consisted of Medium Dense Silty Sand (SM). The standard penetration resistance within the residual soils ranged between 17 bpf and 18 bpf.

Partially Weathered Rock (PWR) is a regionally used term for residual material with a Standard Penetration Resistance (N-values) of 100 bpf or more, but which can be penetrated by the soil drilling equipment. PWR was encountered at borings B-1, B-2, and B-3 at depths ranging from 2 feet to 4.5 feet BGS. Auger refusal was encountered at all borings at depths ranging from 1 foot to 6 feet BGS. Rock coring was not included in our scope.

Groundwater was not encountered within the drilled depths at the time of drilling. Groundwater elevations do fluctuate with seasonal changes and typically vary on the order of 4 to 8 feet. Refer to the Appendix of this report for the boring logs and cross-section plan for the site.

Recommendations:

The following recommendations are based on the information furnished to us, the data obtained from the subsurface exploration, and our past experience with similar projects. They were prepared in general accordance with established and accepted professional geotechnical engineering practice in this region. Our recommendations are based on findings from the dates referenced within this report and do not reflect any variations that would likely exist at later dates or between the pre-designated borings or unexplored areas.

If information becomes available which may impact our recommendations, Matrix Engineering Group shall be afforded the opportunity to review this information and re-evaluate the recommendations contained within this report and make any alterations deemed necessary by a Georgia Registered professional engineer. This report is intended for the use of Rockdale County and its current design team. No other warranty is expressed or implied. Matrix Engineering Group, Inc. is not responsible for conclusions, opinions, or recommendations made by others based on this report.

matrix engineering group, inc. tucker, georgia

The following recommendations present general guidelines for the proposed development:

Subgrade Preparation

The test borings indicated that, the top 1 foot to 4.5 feet of the soil at the site consisted of loose, and wet man-made fill containing hairline roots and gravel. The subgrade preparation for the proposed addition should be the stripping of vegetation and topsoil, the removal of the top few feet of soil, and any deleterious materials, if encountered. Topsoil can be used in landscape areas. Any other items, such as underground utility lines, or trash pits that may be encountered during the grading operation should be treated on an individual basis and brought to the attention of the Geotechnical Engineer for evaluation and recommendations.

After removal of the surface materials, the suitability of the exposed subgrade should be confirmed by proofrolling, which will discern any localized soft zones in the subgrade. The proofrolling should be performed by a loaded tandem-wheeled dump truck with an approximate weight of 25 tons. Any material that deflects excessively or ruts under the loaded truck should be densified or removed and replaced with well-compacted material.

Similarly, the suitability of all other areas of the exposed subgrade needs to be confirmed by proofrolling at the time of construction, after any unsuitable or softened materials are removed. The proofrolling should be observed by the geotechnical engineer. Structural fill procedures are provided in Section 8.1 of this report.

Slab-On-Grade Construction

The concrete slab-on-grade for the proposed addition should be supported on compacted, and properly prepared, soil subgrade. Provided the fill material and/or existing subgrade is installed to a minimum of 98% of the Standard Proctor's maximum dry density, a modulus of subgrade reaction (k) of 125 pci can be used for designing the floor slab-on-grade. Slab reinforcement and joint spacing should be carefully considered to control random cracking due to slab shrinkage. We recommend that a 10-mil vapor barrier/retarder (such as polyethylene) be installed below the (slab-on-grade) concrete to limit intrusion of water vapor through the slab. Beneath slab-on-grade areas, a minimum of 4 inches of clean, densely graded, granular material with a balanced content of fines is recommended to facilitate fine grading and provide stable surface for construction traffic and building loads. <u>Open-graded bases (such as #57 stone) do not meet these requirements because they are relatively incompatible, difficult to trim, and are unstable for construction traffic.</u> It is also difficult to fine grade an open-graded base to a relatively uniform elevation, which can result in restraint to concrete movement as the concrete cools or dries, thus increasing the probability of out-of-joint cracking. If open-graded bases are specified, the

matrix engineering group, inc. tucker, georgia

surface of these bases should be choked off with a clean fine-graded material with at least 10 to 30% of the particles passing a No. 100 sieve, but not contaminated with clay, silt, or organic material.

Foundation

Based on the testing performed, the site appears to be suitable for construction of the proposed addition provided the subgrade preparation is performed in accordance with our recommendations. We recommend that a maximum allowable soil bearing capacity of **2,500 psf** be used to design the foundations. We recommend that after the foundations are excavated, the bottom of the footings should be inspected by the County or a third-party inspection agency in order to verify the recommended bearing capacity and to delineate any soft areas, if encountered.

We recommend that all continuous footings have a minimum width of 2 feet and should be a minimum 18 inches below subgrade elevations to prevent shear failure and to minimize the effects of frost.

Total settlement of footing foundations is estimated to be on the order of 1 inch or less. Based on the subsurface conditions and our experience with similar soils, we do not anticipate differential settlements to exceed 1/2 inch between column supports (assuming 50 foot spacing or less)

Structural Fill Procedure

Staged, methodical and well-planned grading is key to avoiding unnecessary costs and time delays. Areas should not be stripped or disturbed if the grading contractor is unable to properly seal the subgrade prior to departure each day. Exposure of soils to moisture from direct rainfall or runoff usually renders these soils un-usable for several days. This usually gets mischaracterized as an unsuitable soils condition which is inaccurate. Unsuitable soils are defined as those containing deleterious matter (such as organics, alluvium, debris and/or trash). Moisture related problems should be avoided by employing best management practices that involve maintaining positive drainage, installation of berms, diversion channels, and/or sealing the subgrade to avoid water infiltration. Other measures involve covering all stockpiled soils with heavy tarps or plastic to avoid saturating the soils in the event of rainfall. Means and methods of construction are certainly the contractor's jurisdiction; however, exposing otherwise suitable soils to excessive moisture or softening of existing subgrades as a result of unscrupulous construction traffic should be avoided and planned for.

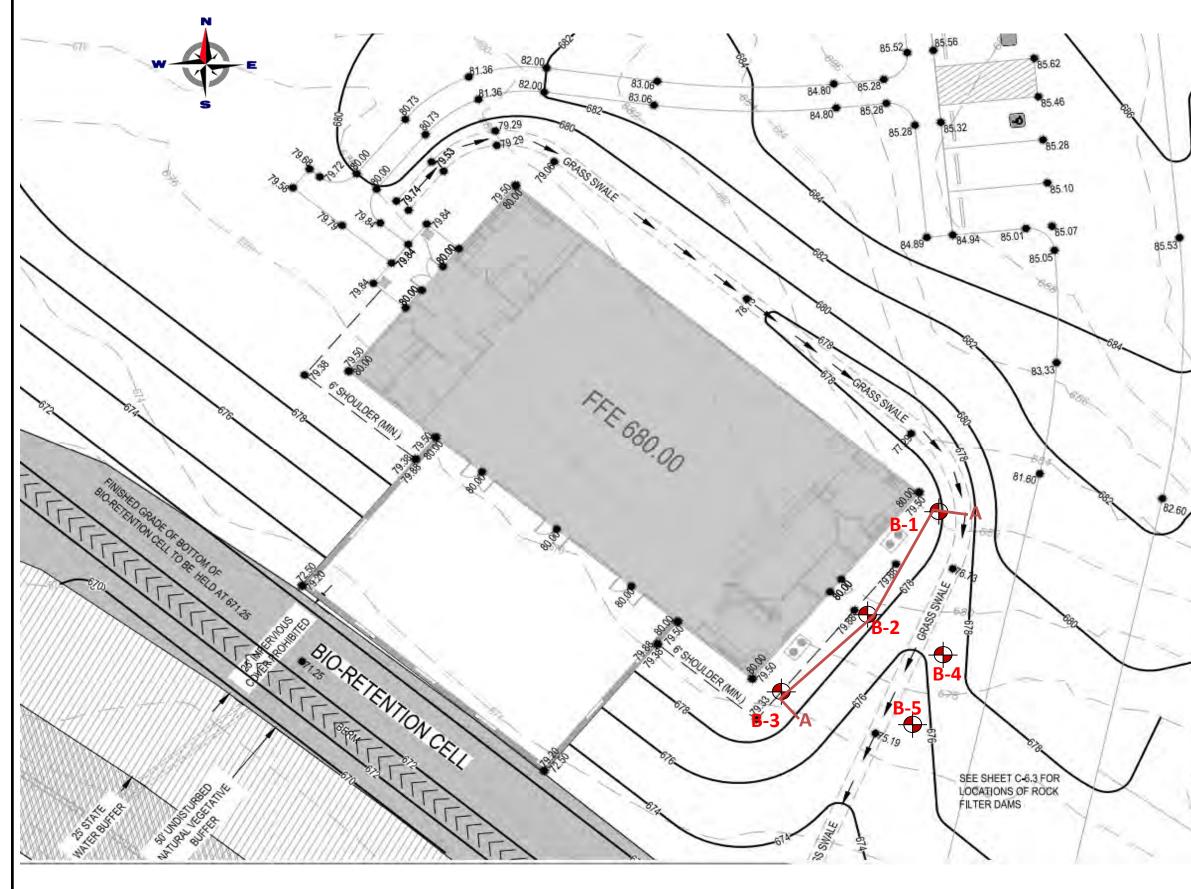
We recommend that the following criteria be used for structural fill:

- 1. Adequate laboratory proctor density tests should be performed on representative samples of the proposed fill materials to provide data necessary for the quality control. The moisture content at the time of compaction should be within 3 percentage points of the optimum moisture content. In addition, we recommend that the fill soils be free of organic matter and rock boulder/cobbles larger than 2 inches in nominal size and relatively non-plastic with plasticity indices less than 20.
- 2. Suitable fill material should be placed in thin lifts (lift thickness depends on type of equipment used, but generally lifts of 8 inches loose measurements are recommended). The soil should be compacted by mechanical means such as sheepsfoot rollers.
- 3. Slopes that are limited to 2:1 (horizontal: vertical), or flatter, will have adequate long term slope stability, if limited in height to 15 feet, based on our experience with the type of soils encountered onsite. The slope's crest should be protected against water ponding. Proposed slopes should incorporate only suitable fill, clean of any organics or any other vegetative content. Topsoil should only be used to provide cover over the completed slope's free face so as to promote vegetative growth which in turn protects the slope's surface against scour and erosion. Slopes should be overbuilt and cut back to the proposed grades, exposing the firm compacted inner core. The amount of overbuilding would vary depending on the site conditions at the time of construction, types of soils used, and degree of compaction achieved.
- 4. When placing fill in horizontal lifts adjacent to areas sloping steeper than 5:1 (horizontal: vertical), horizontal keys and vertical benches should be excavated into the adjacent slope area. Materials generated by the benching operation should be moved sufficiently away from the bench area to allow the geotechnical engineer (testing agency) to properly inspect the area and ascertain that the benching is performed properly.
- 5. We recommend that the fill be compacted to a minimum of 95% of the Standard Proctor Maximum Dry Density (ASTM Specifications D 698). The top 1 foot under pavements or structural areas should be compacted to a minimum of 98% of the Standard Proctor Test.
- 6. An experienced soil engineering inspector should take adequate density tests throughout the fill placement operation to ensure that the specified compaction is being achieved.

matrix engineering group, inc. tucker, georgia

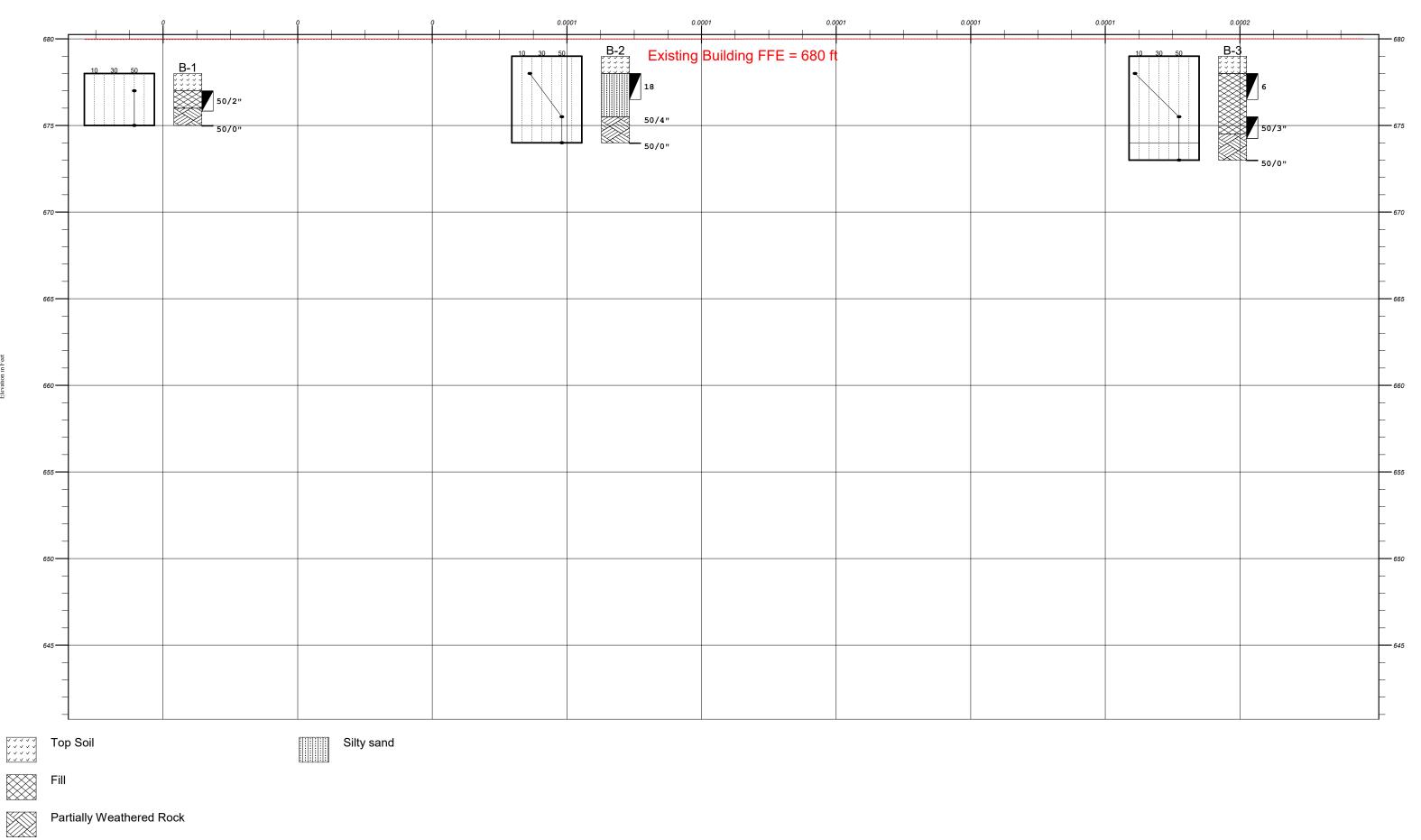
Matrix Engineering Group, Inc. appreciates the opportunity to have worked with you on this project and looks forward to our continued association. If you have any questions or need further assistance, please do not hesitate to call.

Sincerely,


MATRIX ENGINEERING GROUP, INC.

Zam > Tateen

Sam Alyateem, PE Principal Engineer



\ZMATRIX\drive_m\1.0 MATRIX PROJECTS FOLDER\1.7 ROCKDALE COUNTY CONTRACT\Costly Mill Event Center Addition\1.1 Geotechnical - MEG 302287.61\Costley Mill Event Center Addition - Geotechnical Exploration_September 2024.doc

Contraction of the second	TITLE Approximate Borings and Cross- Section Locations Plan
	Cosltley Mill Event Center Addition
1	PROJECT #
	MEG 302287.61
	CLIENT
-	Rockdale County
X	SCALE
	Not to Scale
1	REVIEWED
1	Sam Alyateem, PE
F	DATE 1/29/2024
7-	FIGURE 1
<i>.</i>	LEGEND
7	
l.	B-1 Boring Location
11	Cross-Section Line

LOG OF BORINGS A-A Costley Mill Event Center Addition

MATRIX ENGINEERING GROUP, INC.

Elevation in Fee

MA	JOR DIVISIONS	SYMBOLS	TYPICAL NAMES	
		GW	Well Graded Gravels or Gravel-Sand Mixtures; Little or no fines	
LS ieve)	GRAVELS (More Than 1/2 of	GP	Poorly Graded Gravels or Gravel-Sand Mixtures; Little or no fines	
COARSE-GRAINED SOILS More Than 1/2 of Soil > #200 Sieve)	Coarse Fraction > #4 Sieve)	GM	Silty Gravels, Gravel-Sand-Silt Mixtures	
VINEL Soil >		GC	Clayey Gravels, Gravel-Sand-Clay Mixtures	
E-GRA		SW	Well Graded Sands or Gravelly Sands; Little or no fines	L
ARSH e Than	<u>SANDS</u> (MORE Than 1/2 of	SP	Poorly Graded Sands or Gravelly Sands; Little or no fines	CLASSIFICATION CHART
CC	Coarse Fraction < #4 Sieve)	Silty Sands, Sand-Silt Mixtures	ION (
		SC	Clayey Sands, Sand-Clay Mixtures	ICAT
ieve)		ML	Inorganic Silts and Very Fine Sands, Rock Flour, Silty or Clayey Fine Sands or Clayey Silts with Slight Plasticity	SSIF
SOILS #200 S	<u>SILTS & CLAYS</u> Liquid Limit Less Than 50	CL	Inorganic Clays of Low to Medium Plasticity, Gravelly Clays, Sandy Clays, Silty Clays, Lean Clays	CLA
NED S Soil <	50	OL	Organic Silts and Organic Silty Clays of Low Plasticity	
GRAII 1/2 of		МН	Inorganic Silts, Micaceous or Diatomaceous Fine Sandy or Silty Soils, Elastic Silts	
FINE-GRAINED SOILS More Than 1/2 of Soil < #200 Sieve)	SILTS & CLAYS Liquid Limit Greater Than 50	СН	Inorganic Clays of High Plasticity, Fat Clays	
H (Mor	Than 30	Organic Clays or Medium to High Plasticity, Organic Silty Clays, Organic Silts		
HIGHL	Y ORGANIC SOILS	РТ	Peat and Other Highly Organic Soils	

·	f Cohesionless Soils from Penetration Test	Consistency of	of Cohesive Soils
Very Loose	<u><</u> 4 bpf	Very Soft	<u><</u> 2 bpf
Loose	5-10 bpf	Soft	3-4 bpf
Medium Dense	11-30 bpf	Firm	5-8 bpf
Dense	31-50 bpf	Stiff	9-15 bpf
Very Dense	> 50 bpf	Very Stiff	16-30 bpf
		Hard	30-50 bpf
(bpf=blows per	foot; ASTM D1586)	Very Hard	> 50 bpf

Rela	ative Hardness of Rock		Particle	Size Identification
	Hard rock disintegrates or easily		Boulders	Larger than 12"
Very Soft	compresses to touch; can be hard to		Cobbles	3"-12"
	very hard soil		Gravel	
Soft	May be broken with fingers		Coarse	3/4"-3"
Moderately	May be scratched with a nail,		Fine	4.76mm-3/4"
Soft	corners and edges may be		Sand	
5011	broken with fingers		Coarse	2.0-4.76 mm
Moderately	Light Blow of hammer required		Medium	0.42-2.00 mm
	U 1		Fine	0.42-0.074 mm
Hard	to break samples		Fines	
Hard	Hard blow of hammer required		(Silt or Clay)	Smaller than 0.074 mm
наги	to break sample			

Rock Co	ontinuity	-	uality of Rocks
	<u>otal Length of Core</u> x 100 ngth of Core Run		al core, counting only Length of Core Run)) x 100
Description	Core Recovery (%)	Description	<u>RQD (%)</u>
Incompetent	Less than 40	Very Poor	0-25
Competent	40-70	Poor	25-50
Fairly Continuous	71-90	Fair	50-75
Continnuous	91-100	Good	75-90
		Excellent	90-100

Matrix Engineering Group, Inc.

engineers | special inspectors | construction consultants

Correlation of Penetration Resistance with Relative Density and Consistency Sheet and Soil Classification Chart

MATRIX ENGINEERING GROUP, INC. Geotechnical. Environmental & Construction Materials Consultants

D	RIL	L HOLE LOG	PROJECT: Costley Mill Ever CLIENT: Rockdale County	nt Center A	ddition				-		CT NO			302287.61	
			LOCATION: Refer to Figure 1			DATE: 1/26/2024 ELEVATION: 678 Feet MS LOGGED BY: Sulemana Alha									
			DRILLER: Kilman Brothers	L					-						
	BO	RING NO. B-1	DRILLING METHOD: ASTM	1 D1586 w	ith Auton	natio	- Ham	mer	-		licinan	la Amassan			
			DEPTH TO - WATER> INITI					4+ Ho					CAVING>		
File: Borin	igs	Date Printed: 1/29/2024		1	1		1		TEST	-					
	н "			/PE	. പ	RS			TEST	RE3	ULIS			N-Value	
EVATI (feet)	DEPTH (feet)	Desc	ription	SOIL TYPE	SOIL	SAMPLERS								Blows/ft	
ELEVATION (feet)	ē			sol	s Ys	SAI		ral Mo			ent (%). 🔺		(ASTM D1586)	
								etratior 10	ו- פ 20	30	40	50			
- 678 -	0	Approximately 4 inches Gra	ss and Topsoil		- 	V V									
- 677 -	1	Fill - Loose, Brown, wet, Silt		 		ź	_							50/2"	
- 676 -	2				-	Ľ								0012	
- 675 -	3	Mottled (Yellowish Orange a	WR), Sampled as Very Dense, and Light Gray), Silty SAND.	PWR		<		_						50/0"	
	4	Auger Refusal was encounted	ered at 3.0 feet BGS.									Ť			
- 674 -	_						_								
- 673 -	5								_						
- 672 -	6						-								
- 671 -	7						_								
- 670 -	8						_								
	9														
- 669 -															
- 668 -	10						_								
- 667 -	11														
- 666 -	12						_								
- 665 -	13						_								
	14														
- 664 -								_							
- 663 -	15							_	_						
- 662 -	16						-								
- 661 -	17														
- 660 -	18						_								
	19				1					+					
- 659 -					1										
- 658 -	20								_						
- 657 -	21							_	_						
- 656 -	22				1										
- 655 -	23				1		_								
	24				1			_	_	_					
- 654 -					1			-							
- 653 -	25				1										
- 652 -	26								_						
- 651 -	27				1					_					
- 650 -	28				1		-								
	29				1		_								
- 649 -					1										
λ	Gran	ndwater at the time of duill	ing. Borehole was backfilled	at the ex	nchusion		the f	iold w	ort						
100	, 0,00	nawaier ai ine iime oj arilli	ing. Dorenoie was backjillea	ui ine coi	nciusion	ı UJ	ine J	ieiu W	οrκ.						

MATRIX ENGINEERING GROUP, INC. Geotechnical. Environmental & Construction Materials Consultants

D	RIL	L HOLE LOG	PROJECT: Costley Mill Even	t Center A	ddition				-		NO.:		302287.61				
			CLIENT: Rockdale County			DATE: 1/26/2024 ELEVATION: 679 Feet MS											
			LOCATION: <u>Refer to Figure 1</u>														
	BO	RING NO. B-2	DRILLER: Kilman Brothers	D1507	· 1 A /			LOGGED BY: Sulemana Alha Iammer STATION:									
	_		DRILLING METHOD: ASTM DEPTH TO - WATER> INITI		ith Auton				_ 51/ urs: ₹			CAVIN					
File: Borin	ngs	Date Printed: 1/29/2024	DEFTH TO - WATER / INTL	AL. -	1	. ~						CAVIN	<u> </u>				
ELEVATION (feet)	т			Ц		ss			TEST	RESU	LTS		4				
EVATI (feet)	DEPTH (feet)	Desc	ription	Ľ.	ABC	SAMPLERS							N-Value Blows/ft				
ELEVATIC (feet)	DE (f		1	SOIL TYPE	SOIL	SAN	Natu	ral Moi	isture C	Conten	nt (%).	A	(ASTM D1586)				
Ш				0)	_	+		tration			40						
- 679 -	0	Approximately 4 inches Gra				√		10 	20	30	40	50	4				
- 678 -	1		-		~ ~ ~ ~ ~ - (r (r (r (r (r (r (r (r (r (_						-				
- 677 -	2	White), Silty SAND.	lottled (Light Gray, Brown, and	SM									18				
	3								<u> </u>		_		_				
- 676 -							-		_			_ _	50/4"				
- 676 - - 675 - - 674 -	4	Partially Weathered Rock (P Mottled (White, Greenish Gr	WR), Sampled as Very Dense,	PWR		K	_	+					-				
- 674 -	5	SAND.			KXX	4_						•	50/0"				
	6	Auger Refusal was encounted	ered at 5.0 feet BGS.										4				
	7								_		_	_	-				
- 672 -							_		_				-				
- 671 -	8						-						-				
- 670 -	9						_										
669 -	10								_		_		-				
	11									_			-				
668 -							-						-				
- 667 -	12						-										
- 666 -	13						_		_				_				
665 -	14						_				_		-				
	15												-				
- 664 -													-				
- 663 -	16										_		-				
- 662 -	17						-				_		-				
- 661 -	18						-				_		-				
- 660 -	19						_						1				
	20												4				
- 659 -									_				-				
- 660 - - 659 - - 658 - - 657 - - 656 -	21							+					-				
- 657 -	22						-	1									
- 656 -	23												-				
CEF	24										_		-				
- 655 -								-					1				
- 654 -	25																
- 653 -	26						-						-				
- 652 -	27							_	_	_	_		-				
- 651 -	28						L			_	_	_	-				
	29												1				
- 650 -	23												-				
		1 . 1											<u> </u>				
$\ Nc$	Grou	ndwater at the time of drill	ing. Borehole was backfilled	at the co	nclusion	ı of	the fi	eld w	ork.								

MATRIX ENGINEERING GROUP, INC. Geotechnical, Environmental & Construction Materials Consultants

			PROJECT: Costley Mill Ever	nt Center A	ddition				PRO	JECT	NO.:	MEG	302287.61
	RIL	L HOLE LOG	CLIENT: Rockdale County		dunion				DAT			1/26/20	
			LOCATION: Refer to Figure 1	1					eet MSL				
			DRILLER: Kilman Brothers	L						Sulemana Alhassa			
	BO	RING NO. B-3	DRILLING METHOD: ASTM	1 D1586 w	ith Auton	natio	e Hamr	ner		ATION	2 01 01 11 10	<u></u>	
Eiler Deni		Date Printed: 1/29/2024	DEPTH TO - WATER> INIT				fter 24					CAVIN	G> <u>C</u>
File: Bori	ngs	Date Printed: 1/29/2024			1	T			FEST	RESU	LTS		
ELEVATION (feet)	£ ⊥			SOIL TYPE	SOIL	ERS	Natur						N-Value
ELEVATIC (feet)	DEPTH (feet)	Desc	ription		SO	AMPL	Natur		-t	Conton	+ (0/)		Blows/ft (ASTM D1586)
				sc	N N	Ś	Pene	ar ivios tration	sture (11 (%).	•	
679 -	0					.				30	40	50	
	1	Approximately 4 inches Gra	ss and Topsoil		~~~~	V				_			-
5 - 678 - 5 -			and Dark Brown), Silty Sand	Fill		X	-			_			6
- 678 - - 677 - - 676 -	2	with Hairline Roots and Gra	vei.			Ł		<u> </u>					
- 676 -	3					×	-		<u> </u>				-
675 -	4					×7	_			_			50/3"
8 - 674 -	5		WR), Sampled as Very Dense,	PWR		-	_			-			-
	6	Silty SAND.					_						50/0"
	7	Auger Refusal was encounted	ered at 6.0 feet BGS.			Γ				_			
4 - 672 - Ŋ							_						-
11	8						_						
- 670 -	9						-			_			
669 -	10						_						-
668 -	11						_						-
	12												
- 668 - - 667 - - 666 - - 665 - - 664 -													
י - 666 - קי	13						_			_			
665 -	14						_						
664 -	15						_			_			-
663 -	16						_						-
I⊢ 662 -	17						_						
661 -	18												-
3 - 901 -	19									_			-
660 -													
	20									_			
658 -	21						_						-
657 -	22						_						
656 -	23												-
655 -	24									_			-
	25												
654 -													-
- 653 -	26						-						
- 652 -	27						_			+			-
- 651 -	28						-						
- 650 -	29									_			-
Ne	o Grou	ndwater at the time of drill	ing. Borehole was backfilled	at the co	nclusion	ı of	the fie	eld wo	ork.				
		-	-			-	-						

MATRIX ENGINEERING GROUP, INC. Geotechnical, Environmental & Construction Materials Consultants

	D	RIL	ILL HOLE LOG PROJECT: Costley Mill Event Center Addition CLIENT: Rockdale County LOCATION: Refer to Figure 1						OG CLIENT: Rockdale County DATE: LOCATION: Refer to Figure 1 ELEVATION:									DATE: ELEVATION			24 eet MSL
]	File: Borin		RING NO. B-4	DRILLER: <u>Kilman Brothers</u> DRILLING METHOD: <u>ASTM</u> DEPTH TO - WATER> INIT		th Autom		: Hammer iter 24+ H		STA	TION:										
the site.	ELEVATION (feet)	DEPTH (feet)		ription	SOIL TYPE	SYMBOL SOIL	SAMPLERS	Natural M	TEST RESULTS				•	N-Value Blows/ft (ASTM D1586)							
only to this boring and should not be interpreted	676 - 675 - 674 - 673 - 673 - 672 - 671 - 670 - 669 - 666	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Approximately 4 inches Graa											50/0"							
This information pertains	656 - 655 - 654 - 652 - 651 - 650 - 649 - 648 - 647 - <i>No</i>	21 22 23 24 25 26 27 28 29	ndwater at the time of drilli	ng. Borehole was backfilled	at the cor	nclusion	of		wor												

MATRIX ENGINEERING GROUP, INC. Geotechnical. Environmental & Construction Materials Consultants

	во	L HOLE LOG	PROJECT: Costley Mill Ex CLIENT: Rockdale County LOCATION: Refer to Figur DRILLER: Kilman Brothers DRILLING METHOD: AS DEPTH TO - WATER> IN	e 1 5 FM D1586 w					ELEV LOGO	E:			Feet MSL
ELEVATION [feet]	DEPTH [6]	Date Printed: 1/29/20: Des	cription		SYMBOL		1	т	TEST R	FSUI	TS		N-Value Blows/ft (ASTM D158
ш — Ш 676 -					S C	4 SA	Penet	tration	- •		(%). <u>40</u>	▲ 50	
675 - 674 -	2	Approximately 4 inches Gr Residual - Medium Dense, Yellowish Orange), Silty S/	Mottled (Light Gray and	SM				•					17
673 - 672 - 672 - 671 - 671 - 670 - 669 - 669 - 666 - 665 - 666 - 665 - 666 - 665 - 665 - 665 - 665 - 655 - 75 - 655 - 75 - 655 -	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 22 23 24 25 26 27 28 29	Auger Refusal was encoun	tered at 3.5 feet BGS.										50/0"

Project Name: Costley Mill Event Center Addition								
Project Location: 2455 Costley Mill Rd NE, Conyers, GA 30013, USA								
Client: Rockdale County	Project Code: MEG 301287.61							
Preparer: Sulemana Alhassan Reviewer: Sam Alyateem, PE								
Report Date: 01/29/2024	Page Number: 1 of 5							

Picture 1: B-1 Weather: Fog		Picture 2: B-2 Weather: Light rain	
Lat/Lng: 33.7106,-83.9291 Bearing: S Date Taken: 01/26/2024	Taken By: Sulemana J. A Tags:	Lat/Lng: 33.7105,-83.9293 Bearing: E Date Taken: 01/26/2024	Taken By: Sulemana J. A Tags:

Picture 3: B-3		Picture 4: B-4		
Weather: Light rain		Weather: Fog		
Lat/Lng: 33.7105,-83.9292 Bearing: NE Date Taken: 01/26/2024	Taken By: Sulemana J. A Tags:	Lat/Lng: 33.7105,-83.9291 Bearing: W Date Taken: 01/26/2024		Taken By: Sulemana J. A Tags:
	Project Name: Costley Mill Event Center Addition			
	Project Location: 2455 Costley Mill Rd NE, Conyers, GA 30013, USA			
	Client: Rockdale County		Project Code: MEG 301287.61	
	Preparer: Sulemana Alhassan		Reviewer: Sam Alyateem, PE	
engineering group	Report Date: 01/29/2024		Page Number: 2 of 5	

Weather: Fog		Weather: Overcast		
Lat/Lng: 33.7106,-83.9291	Taken By: Sulemana J. A	Lat/Lng: 33.7105,-83.9292	Taken By: Sulemana J. A	
Bearing: W	Tags:	Bearing: N	Tags:	
Date Taken: 01/26/2024		Date Taken: 01/23/2024	1493.	

Picture 7:		Picture 8:		
Weather: Overcast		Weather: Overcast		
Lat/Lng: 33.7104,-83.9292 Bearing: NW Date Taken: 01/23/2024	Taken By: Sulemana J. A Tags:	Lat/Lng: 33.7 Bearing: NW Date Taken:		Taken By: Sulemana J. A Tags:
MOLENCE Engineering group	Project Name: Costley Mill Event Center Addition			
	Project Location: 2455 Costley Mill Rd NE, Conyers, GA 30013, USA			
	Client: Rockdale County		Project Code: MEG 301287.61	
	Preparer: Sulemana Alhassan		Reviewer: Sam Alyateem, PE	
	Report Date: 01/29/2024		Page Number: 3 of 5	

Picture 9:	Picture 10:

Weather: Overcast		Weather: Overcast		
Lat/Lng: 33.7107,-83.9289 Bearing: W Date Taken: 01/23/2024	Taken By: Sulemana J. A Tags:	Lat/Lng: 33.7108,-83.9290 Bearing: SW Date Taken: 01/23/2024	Taken By: Sulemana J. A Tags:	

Picture 11:		Picture 12:		
Weather: Overcast		Weather: Overcast		
Lat/Lng: 33.7110,-83.9291 Bearing: W Date Taken: 01/23/2024	Taken By: Sulemana J. A Tags:	Lat/Lng: 33.7 Bearing: W Date Taken:		Taken By: Sulemana J. A Tags:
	Project Name: Costley Mill Event Center Addition			
	Project Location: 2455 Costley Mill Rd NE, Conyers, GA 30013, USA			
	Client: Rockdale County		Project Code: MEG 301287.61	
	Preparer: Sulemana Alhassan		Reviewer: Sam Alyateem, PE	
engineering group	Report Date: 01/29/2024		Page Number: 4 of 5	

Picture 13:		Picture 14:		
Weather: Light rain		Weather: Lig	ht rain	
Lat/Lng: 33.7105,-83.9292	Taken By: Sulemana J. A	Lat/Lng: 33.7		Taken By: Sulemana J. A
Bearing: E	Tags:	Bearing: NW		Tags:
Date Taken: 01/26/2024	Tays.	Date Taken:	01/26/2024	Tays.
Picture 15: Weather: Fog				
Lat/Lng: 33.7105,-83.9289	Taken By: Sulemana J. A			
Bearing: SW				
Date Taken: 01/26/2024	Tags:			
	Project Name: Costley Mill Event Center Addition			
	Project Location: 2455 Costley Mill R		NE, Conyers, GA 30013, USA	
	Client: Rockdale County		Project Code: MEG 301287.61	
	Preparer: Sulemana Alhassan		Reviewer: Sam Alyateem, PE	
engineering group	Report Date: 01/29/2024		Page Number: 5 of 5	