Vegitation and Planting Schedule

This schedule identifies the construction activities including plant species, planting dates, timing, certifying, timing, and mapping for the project. The schedule is required to be submitted with the final project documentation. The schedule includes the following:

1. **Vegetation and Planting Schedule**
2. **Culvert Installation Schedule**
3. **Silt Fence Installation Schedule**
4. **Drainage System Installation Schedule**
5. **Earthwork Schedule**

The schedule is intended to ensure that the project is completed in accordance with the contract documents. The contractor is responsible for providing the schedule to the project manager and the project engineer. The schedule shall be updated as required.

Silt Fence Installation with 2 Hooks and Spans

This process requires the installation of sediment control measures at project sites. The silt fence shall be installed to control erosion and sedimentation at the project site. The silt fence shall be installed within 7 days of the start of construction. The silt fence shall be installed to control erosion and sedimentation at the project site.

Drainage System Installation Schedule

This schedule addresses the installation of drainage systems at project sites. The schedule shall be submitted to the project manager and the project engineer. The schedule shall be updated as required.

Earthwork Schedule

This schedule addresses the installation of earthwork at project sites. The schedule shall be submitted to the project manager and the project engineer. The schedule shall be updated as required.

Culvert Installation Schedule

This schedule addresses the installation of culverts at project sites. The schedule shall be submitted to the project manager and the project engineer. The schedule shall be updated as required.

Vegetation and Planting Schedule

This schedule addresses the installation of vegetation and planting at project sites. The schedule shall be submitted to the project manager and the project engineer. The schedule shall be updated as required.

Silt Fence Installation with 2 Hooks and Spans

This process requires the installation of sediment control measures at project sites. The silt fence shall be installed to control erosion and sedimentation at the project site. The silt fence shall be installed within 7 days of the start of construction. The silt fence shall be installed to control erosion and sedimentation at the project site.

Drainage System Installation Schedule

This schedule addresses the installation of drainage systems at project sites. The schedule shall be submitted to the project manager and the project engineer. The schedule shall be updated as required.

Earthwork Schedule

This schedule addresses the installation of earthwork at project sites. The schedule shall be submitted to the project manager and the project engineer. The schedule shall be updated as required.

Culvert Installation Schedule

This schedule addresses the installation of culverts at project sites. The schedule shall be submitted to the project manager and the project engineer. The schedule shall be updated as required.
SEDIMENT STORAGE

The site has a total disturbed area of 9.3 acres. The following table summarizes the required and available sediment storage on this project. The Contractor shall provide an analysis of the storage volume for the BMP's specified in this table.

Four of the seven outlets, plus the sheet flow area provide overall storage in excess of the required sediment storage volume. The remaining three outlets (12.6%) are not projected to meet the project's sediment storage requirements.

The project area is drained by three separate perennial streams, these streams have a 25-foot buffer as measured from the exerted vegetation. Water bodies are impacted by this project.

To prevent soil loss from bypassing total sediment storage, a temporary sump shall be installed around all total sediment storage that are not located in a pit or on an exsloped area. Temporary sumps in accordance with Construction Manual D-24C, temporary sumps shall be temporary and/or permanent depending on the situation, and these BMPs shall be detailed on the individual BMP sheets.

STATE-WATER BUFFER IMPACTS

Watershed activities shall not be conducted within the 25- or 50-foot unaltered stream buffer unless approved by the project engineer.除项目工程师批准外，禁止在25-或50英尺的未受干扰的溪流缓冲区进行流域活动。

The Contractor is not permitted to enter into stream buffers, except as described in the table below.

The Contractor is allowed to install the new culverts and construct road cuts.

CONSTRUCTION ICONS

The Contractor is allowed to construct a road and bench as needed.

ESPCP GENERAL NOTES

The construction engineer will submit the required permit/approval forms in connection with the project. All BMP activities are designed by the contractor or by the contractor's design consultant.

UNION WIRE CHUTE WASH DOWNS

The washing of materials that are placed in the chute and truck barge used in the delivery of materials cannot be prohibited at any site.

IN accordance with Standard Specification UNL 25, these washdown systems are utilized in the delivery of materials that are discharged onto the site. Water will be used at the site to prevent soil loss from the project area. Water will be used to prevent soil loss from the project area. Any washing of materials that are placed in the chute and truck barge used in the delivery of materials cannot be prohibited at any site.

In conclusion, the construction engineer will submit the required permit/approval forms in connection with the project. All BMP activities are designed by the contractor or by the contractor's design consultant.
Representative sampling may be utilized on this project as specified below. The initial outfall drainage basins along the project corridor have been carefully evaluated and compared to the basins of note. Alternate sampled features are identified in the table below.

Note:
The total site area is 1.33 acres.

SAMPLING INFORMATION

<table>
<thead>
<tr>
<th>Representative</th>
<th>Location</th>
<th>Sample Size</th>
<th>Applicable Construction Stage for Sampling</th>
<th>Sampling Type</th>
<th>Draining Area for Receiving Water (sq ft)</th>
<th>Upstream Disturbed Area (acres)</th>
<th>Water Column Width (feet)</th>
<th>Applicable NPC Values (Outfall Sampling only)</th>
<th>Available Allowable Erosion Rate (ER) (Receiving water sampling only)</th>
<th>Location Description</th>
<th>Construction Activity</th>
<th>Average Outfall Slope (H:V:R)</th>
<th>Soil Erosion Rate</th>
<th>Represented Outfall Drainage Basins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ditch 840-10.75</td>
<td>Hayley Creek</td>
<td>All</td>
<td>Outfall</td>
<td>13.5</td>
<td>0.75</td>
<td>Warm</td>
<td>50</td>
<td>25</td>
<td>New Location-E</td>
<td>Road Widening</td>
<td>0.1</td>
<td>0.04</td>
<td>3</td>
<td>Shark</td>
</tr>
<tr>
<td>Ditch 528-06.27</td>
<td>Hayley Creek</td>
<td>All</td>
<td>Outfall</td>
<td>13.5</td>
<td>0.75</td>
<td>Warm</td>
<td>50</td>
<td>25</td>
<td>New Location-E</td>
<td>Road Widening</td>
<td>0.1</td>
<td>0.01</td>
<td>5</td>
<td>NA</td>
</tr>
</tbody>
</table>

The primary sampled features identified should be used on the initial sampling locations. An alternate sampled feature may be used if additional sampling is required or to replace a primary sampled feature that is no longer located within the active phase of construction.

WATER QUALITY INSPECTING AND SAMPLING PROCEDURES

See Special Provision 167 and other pertinent documents for the inspecting and sampling procedures.

RIPRAP OUTLET PROTECTION

<table>
<thead>
<tr>
<th>Number</th>
<th>Height</th>
<th>Backfill</th>
<th>Slope</th>
<th>Type</th>
<th>Specific Weight</th>
<th>Size</th>
<th>Spacing</th>
<th>Color</th>
<th>Material</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65</td>
<td>0.5</td>
<td>1.5</td>
<td>Flat</td>
<td>0.65</td>
<td>12</td>
<td>2</td>
<td>Gray</td>
<td>Concrete</td>
<td>1000</td>
</tr>
</tbody>
</table>

CHANNEL PROTECTION

All channels may be stabilized exclusively with permanent grading except as noted otherwise in the table below.

<table>
<thead>
<tr>
<th>Date</th>
<th>Water Temperature</th>
<th>Flow Velocity</th>
<th>Flow Rate</th>
<th>Erosion Rate</th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
<th>Type 4</th>
<th>Erosion Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/27/2019</td>
<td>68.7</td>
<td>1.2</td>
<td>5.3</td>
<td>80</td>
<td>2.5</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>2.5</td>
</tr>
<tr>
<td>09/24/2019</td>
<td>69.3</td>
<td>1.3</td>
<td>2.5</td>
<td>50</td>
<td>2.0</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>2.0</td>
</tr>
</tbody>
</table>
PROVISIONS FOR EROSION, SEDIMENTATION & POLLUTION CONTROL PLAN CHECKLIST

IN/RASTRUCTURE CONSTRUCTION PROJECTS

MV
Rockdale County SWCD

Kladman Rd. @ McDaniel Mil Rd

2570 Old Conington Hwy, Conyers, GA 30012

City/County

Rockdale

Project Name

Date on Plans

01/26/2020

Name & Title of Person Filling Out Checklist

Jeffery W. Over - jlover@4.com

1. Prevent complete requirements of sampling frequency and reporting of sampling results.
2. Provide complete database of results per Part 177 of the code.
3. Demonstrate satisfactory methods to be used to substantiate the samples for each location.
4. Appendix A is required for all sediments plans where applicable.
5. Demonstrate of sampling locations, equipment, and personnel for all samples.
6. Demonstrate of sampling locations, equipment, and personnel for all samples.
7. Demonstrate of sampling locations, equipment, and personnel for all samples.
8. Demonstrate of sampling locations, equipment, and personnel for all samples.
9. Demonstrate of sampling locations, equipment, and personnel for all samples.
10. Demonstrate of sampling locations, equipment, and personnel for all samples.
11. Demonstrate of sampling locations, equipment, and personnel for all samples.
12. Demonstrate of sampling locations, equipment, and personnel for all samples.
13. Demonstrate of sampling locations, equipment, and personnel for all samples.
14. Demonstrate of sampling locations, equipment, and personnel for all samples.
15. Demonstrate of sampling locations, equipment, and personnel for all samples.
16. Demonstrate of sampling locations, equipment, and personnel for all samples.
17. Demonstrate of sampling locations, equipment, and personnel for all samples.
18. Demonstrate of sampling locations, equipment, and personnel for all samples.
19. Demonstrate of sampling locations, equipment, and personnel for all samples.
20. Demonstrate of sampling locations, equipment, and personnel for all samples.
21. Demonstrate of sampling locations, equipment, and personnel for all samples.
22. Demonstrate of sampling locations, equipment, and personnel for all samples.
23. Demonstrate of sampling locations, equipment, and personnel for all samples.
24. Demonstrate of sampling locations, equipment, and personnel for all samples.
25. Demonstrate of sampling locations, equipment, and personnel for all samples.
26. Demonstrate of sampling locations, equipment, and personnel for all samples.
27. Demonstrate of sampling locations, equipment, and personnel for all samples.
28. Demonstrate of sampling locations, equipment, and personnel for all samples.
29. Demonstrate of sampling locations, equipment, and personnel for all samples.
30. Demonstrate of sampling locations, equipment, and personnel for all samples.
31. Demonstrate of sampling locations, equipment, and personnel for all samples.
32. Demonstrate of sampling locations, equipment, and personnel for all samples.
33. Demonstrate of sampling locations, equipment, and personnel for all samples.
34. Demonstrate of sampling locations, equipment, and personnel for all samples.
35. Demonstrate of sampling locations, equipment, and personnel for all samples.
36. Demonstrate of sampling locations, equipment, and personnel for all samples.
37. Demonstrate of sampling locations, equipment, and personnel for all samples.
38. Demonstrate of sampling locations, equipment, and personnel for all samples.
39. Demonstrate of sampling locations, equipment, and personnel for all samples.
40. Demonstrate of sampling locations, equipment, and personnel for all samples.
41. Demonstrate of sampling locations, equipment, and personnel for all samples.
42. Demonstrate of sampling locations, equipment, and personnel for all samples.
43. Demonstrate of sampling locations, equipment, and personnel for all samples.
44. Demonstrate of sampling locations, equipment, and personnel for all samples.
45. Demonstrate of sampling locations, equipment, and personnel for all samples.
46. Demonstrate of sampling locations, equipment, and personnel for all samples.
47. Demonstrate of sampling locations, equipment, and personnel for all samples.
48. Demonstrate of sampling locations, equipment, and personnel for all samples.
49. Demonstrate of sampling locations, equipment, and personnel for all samples.
50. Demonstrate of sampling locations, equipment, and personnel for all samples.
51. Demonstrate of sampling locations, equipment, and personnel for all samples.
52. Demonstrate of sampling locations, equipment, and personnel for all samples.
53. Demonstrate of sampling locations, equipment, and personnel for all samples.
54. Demonstrate of sampling locations, equipment, and personnel for all samples.
55. Demonstrate of sampling locations, equipment, and personnel for all samples.
56. Demonstrate of sampling locations, equipment, and personnel for all samples.
57. Demonstrate of sampling locations, equipment, and personnel for all samples.
58. Demonstrate of sampling locations, equipment, and personnel for all samples.
59. Demonstrate of sampling locations, equipment, and personnel for all samples.
60. Demonstrate of sampling locations, equipment, and personnel for all samples.
61. Demonstrate of sampling locations, equipment, and personnel for all samples.
62. Demonstrate of sampling locations, equipment, and personnel for all samples.
63. Demonstrate of sampling locations, equipment, and personnel for all samples.
64. Demonstrate of sampling locations, equipment, and personnel for all samples.
65. Demonstrate of sampling locations, equipment, and personnel for all samples.
66. Demonstrate of sampling locations, equipment, and personnel for all samples.
67. Demonstrate of sampling locations, equipment, and personnel for all samples.
68. Demonstrate of sampling locations, equipment, and personnel for all samples.
69. Demonstrate of sampling locations, equipment, and personnel for all samples.
70. Demonstrate of sampling locations, equipment, and personnel for all samples.
71. Demonstrate of sampling locations, equipment, and personnel for all samples.
72. Demonstrate of sampling locations, equipment, and personnel for all samples.
73. Demonstrate of sampling locations, equipment, and personnel for all samples.
74. Demonstrate of sampling locations, equipment, and personnel for all samples.
75. Demonstrate of sampling locations, equipment, and personnel for all samples.
76. Demonstrate of sampling locations, equipment, and personnel for all samples.
77. Demonstrate of sampling locations, equipment, and personnel for all samples.
78. Demonstrate of sampling locations, equipment, and personnel for all samples.
79. Demonstrate of sampling locations, equipment, and personnel for all samples.
80. Demonstrate of sampling locations, equipment, and personnel for all samples.
81. Demonstrate of sampling locations, equipment, and personnel for all samples.
82. Demonstrate of sampling locations, equipment, and personnel for all samples.
83. Demonstrate of sampling locations, equipment, and personnel for all samples.
84. Demonstrate of sampling locations, equipment, and personnel for all samples.
85. Demonstrate of sampling locations, equipment, and personnel for all samples.
86. Demonstrate of sampling locations, equipment, and personnel for all samples.
87. Demonstrate of sampling locations, equipment, and personnel for all samples.
88. Demonstrate of sampling locations, equipment, and personnel for all samples.
89. Demonstrate of sampling locations, equipment, and personnel for all samples.
90. Demonstrate of sampling locations, equipment, and personnel for all samples.
91. Demonstrate of sampling locations, equipment, and personnel for all samples.
92. Demonstrate of sampling locations, equipment, and personnel for all samples.
93. Demonstrate of sampling locations, equipment, and personnel for all samples.
94. Demonstrate of sampling locations, equipment, and personnel for all samples.
95. Demonstrate of sampling locations, equipment, and personnel for all samples.
96. Demonstrate of sampling locations, equipment, and personnel for all samples.
97. Demonstrate of sampling locations, equipment, and personnel for all samples.
98. Demonstrate of sampling locations, equipment, and personnel for all samples.
99. Demonstrate of sampling locations, equipment, and personnel for all samples.
100. Demonstrate of sampling locations, equipment, and personnel for all samples.
101. Demonstrate of sampling locations, equipment, and personnel for all samples.
102. Demonstrate of sampling locations, equipment, and personnel for all samples.
103. Demonstrate of sampling locations, equipment, and personnel for all samples.
104. Demonstrate of sampling locations, equipment, and personnel for all samples.
105. Demonstrate of sampling locations, equipment, and personnel for all samples.
106. Demonstrate of sampling locations, equipment, and personnel for all samples.
107. Demonstrate of sampling locations, equipment, and personnel for all samples.
108. Demonstrate of sampling locations, equipment, and personnel for all samples.
109. Demonstrate of sampling locations, equipment, and personnel for all samples.
110. Demonstrate of sampling locations, equipment, and personnel for all samples.
111. Demonstrate of sampling locations, equipment, and personnel for all samples.
112. Demonstrate of sampling locations, equipment, and personnel for all samples.
113. Demonstrate of sampling locations, equipment, and personnel for all samples.
114. Demonstrate of sampling locations, equipment, and personnel for all samples.
115. Demonstrate of sampling locations, equipment, and personnel for all samples.
116. Demonstrate of sampling locations, equipment, and personnel for all samples.
117. Demonstrate of sampling locations, equipment, and personnel for all samples.
118. Demonstrate of sampling locations, equipment, and personnel for all samples.
119. Demonstrate of sampling locations, equipment, and personnel for all samples.
120. Demonstrate of sampling locations, equipment, and personnel for all samples.
121. Demonstrate of sampling locations, equipment, and personnel for all samples.
122. Demonstrate of sampling locations, equipment, and personnel for all samples.
123. Demonstrate of sampling locations, equipment, and personnel for all samples.
Errosion Control Legend

- **Section 163,700, Spec. Sect.:**
 - **Bs:** Streambank Stabilization
 - **Ds3:** Orange Barrier Fence
 - **Ds4:** Streambank Mitigation Plans
 - **Ds5:** Orange Barriers

Descriptive Notes:

1. Do not use erosion control items in a flowing stream or in a tidal area below high tide.
2. For additional information on the design and application of erosion and sediment control Best Management Practices (BMPs), refer to the latest edition of the Georgia Soil and Water Conservation Commission's, "Manual for Erosion and Sediment Control in Georgia.

Special Area Requirements:

- **ESA (Environmentally Sensitive Area):**
 - Orange Barrier Fence delineates environmentally sensitive areas where construction shall not clear, cut, or place construction materials or equipment within this area.

Section 163,700:

- **Breakdown:**
 - **Ds2:** Streambank Stabilization
 - **Ds3:** Orange Barrier Fence

Section 700,890:

- **Breakdown:**
 - **Ds4:** Streambank Mitigation Plans
 - **Ds5:** Orange Barriers

Temporary Grassing:

- **Symbol:**
 - **Ds3:** Symbol

Sodding:

- **Symbol:**
 - **Ds4:** Symbol

- **Pattern:**
 - **Bs:** Pattern

Flocculants and Coagulants:

- **Pattern:**
 - **Bs:** Pattern

Note:

1. Do not use erosion control items in a flowing stream or in a tidal area below high tide.
2. For additional information on the design and application of erosion and sediment control best management practices (BMPs), refer to the latest edition of the Georgia Soil and Water Conservation Commission's, "Manual for Erosion and Sediment Control in Georgia."
SLOPE StABILIZATION (CovErsion) CONTroL maThings are a PROtective COVERAGE USED to PREVENT EROSION AND ESTABLISH RetARgment On PERMANENT PERVERsION OR SteeP SLOPES. SLOPE StABILIZATION May bE A ROLLED EROSION CONTROL ProdUct (RECP) or A HYDRAULIC EROSION CONTROL ProdUct (HEC). SLOPE StABILIZATION Shall bE USED on ALL OR fULL SLOPES of 2:1 or SteePER and Width of 50 fEET of fULL CROSS Drains and DitchES.

NOTE: DePORT ConTOUR fLATS OR bUNDLES on WOOD fURCH bUNDLES SHALL bE USED as SLOPE StABILIZATION WITHIN bUFFERED AREAS.

TACKIFIERS DEhydrate IN WARTER and READILY BLEND with OTHER Slurry maTerials AND are USED to fILtER FOR SoiL, ComPOST, SioLs, Straw, Hay or Wool.

TACKIFIERS REQUIREMENTS, SUCH AS maTIC maTURITY maDE UP maSSEd are ADdressed by STANDaRDS SPECifiCATIONs AND aRE NOT SPECifiCALLY SHOWN on the PEARls. TACKIFIERS is TYPICALLY USED by the ConstrUCTION fOR tEmporARY or PerMANENT GRISSING.

Refer to the LATEST EDITION of the "manuAl for EROsion and Sediment ControL IN georGia" FOR CAtENA.

A checK DAm COMPOSED of SYNTHETIC FiBEr maTReIAl, WIDE REReNCEnGS, PooL, oVERrHEAD wiTH AND in FOllOWIng mAtching TAnY maTREIAlS PlACED in PILES in a SpEciAl COMBINATION wHICH ContROls EnErgy dissipAtion and FilTRATION of Slurry WAtER. See ConstrUCTION DetAIL 0-0 for ADDitioNal InFORMATIoN and SPECifiC SPECifiCATIONS.

THIS Item is SUITABLE fOR USE in RoadliN g Ditches that aRE PART of INFRASTRUCTURE ConstrUCTION Projects and WITHIN the CLEAR ZONE. If THIS Item is USED in an aRea with fLOWS GREATER THAN 2.0-cfS or WITHOUT a SoiL StABILIZATION, A miMiNAl of ONE ROCK DAm maTREIAl SHALL bE USEd at the DOwnSTReAM DISCHARGE POinT.

A checK DAm COMPOSED of SYNTHETIC FiBEr maTReIAl, WIDE REReNCEnGS, PooL, oVERrHEAD wiTH AND in FOllOWIng mAtching TAnY maTREIAlS PlACED in PILES in a SpEciAl COMBINATION wHICH ContROls EnErgy dissipAtion and FilTRATION of Slurry WAtER. See ConstrUCTION DetAIL 0-0 for ADDitioNAl InFORMATIoN and SPECifiC SPECifiCATIONS.

A checK DAm COMPOSED of SYNTHETIC FiBEr maTReIAl, WIDE REReNCEnGS, PooL, oVERrHEAD wiTH AND in FOllOWIng mAtching TAnY maTREIAlS PlACED in PILES in a SpEciAl COMBINATION wHICH ContROls EnErgy dissipAtion and FilTRATION of Slurry WAtER. See ConstrUCTION DetAIL 0-0 for ADDitioNAl InFORMATIoN and SPECifiC SPECifiCATIONS.

ConSISTS of LinINg a ChAnnel with TYPe 1 RiP-RaP at hEAd wAtER SpecifiC SPECifiCATIONS PlACED on TOP of a GeotexTILE UNDERLINER. THE RiP-RaP ShAll protect the ChAnnel flowINg to a DEPTH "Dp" recOMmended by the georGia CHAnnel LinINg PrograM. ADDitioNal EROsion ControL maTREIAlS maY bE USEd.

ConSISTS of LinINg a ChAnnel with TYPe 1 RiP-RaP at hEAd wAtER SpecifiC SPECifiCATIONS PlACED on TOP of a GeotexTILE UNDERLINER. THE RiP-RaP ShAll protect the ChAnnel flowINg to a DEPTH "Dp" recOMmended by the georGia CHAnnel LinINg PrograM. ADDitioNal EROsion ControL maTREIAlS maY bE USEd.

StABILIZATION maTREIAlS are CONSTRUCTed of TYPe-3 RiP-RaP with GeotexTILE UNDERLINER. StABILIZATION maTREIAlS are PlACED in WAtER with OTHER Slurry maTREIAlS PlACED in PILES in a SpEciAl COMBINATION wHICH ContROls EnErgy dissipAtion and FilTRATION of Slurry WAtER. See ConstrUCTION DetAIL 0-0 for ADDitioNAl InFORMATIoN and SPECifiC SPECifiCATIONS.

1. DO not USE EROsion ControL ITEmS in a FLOWING STREAM or in a Tidal aRea bElOW hIGH TIDE.
2. For ADDitioNAL InFORMATIoN on the DESIGN and aPplication of EROsion and Sediment ControL best maNAGEment PRACTices (BMPs), Refer to the LATEST EDITION of the georGia SoIL and WAtER ControL COMMISSION's, "manuAl for EROsion and Sediment ControL IN georGia."
1. DO NOT USE EROSION CONTROL ITEMS IN A FLOWING STREAM OR IN A TIDAL AREA BELOW HIGH TIDE.

2. FOR ADDITIONAL INFORMATION ON THE DESIGN AND APPLICATION OF EROSION AND SEDIMENT CONTROL BEST MANAGEMENT PRACTICES (BMPs), REFER TO THE LATEST EDITION OF THE GEORGIA SOIL AND WATER CONSERVATION COMMISSION'S "MANUAL FOR EROSION AND SEDIMENT CONTROL IN GEORGIA".
A temporary channel constructed to convey flow around a construction site while a permanent drainage structure is being constructed in a natural stream. This is a measure used to protect stream beds from sedimentation and erosion. The channel is designed to convey flow over and around any site debris, stabilize the area, and prevent streambank erosion. It is designed for a 25-year storm event and must have some form of outlet protection. Additional labeling is not required if shown as a permanent drainage structure on the construction plans. Inlets shall be spaced according to GDOT guidelines depending on the size of the project area and on other criteria.

1. Do not use erosion control items in a flowing stream or in a tidal area below high tide.

2. For additional information on the design and application of erosion and sediment control best management practices (BMPs), refer to the latest edition of the Georgia Soil and Water Conservation Commission's "Manual for Erosion and Sediment Control in Georgia."
Erosion Control Legend

Detention Pond
- **Type A**: Detention Pond

Sediment Barriers
- **Type D**: Stone Filter Barriers
- **Type E**: Silt Control Structures

Flow Control
- **Type C**: Slotted Board Saw
- **Type R**: Rock Filter Dam

Stone Filter Barriers
- **Type S**: Stone Filter Bars

References
1. **EC-L(sheets 1-7)**: Georgia Soil and Water Conservation Commission's Manual for Erosion and Sediment Control
2. **TABLE**: Uniform Code Sheet

Detention Pond Details
- **Rt-Sg1**: Type 1: Used on Box Culverts
- **Rt-Sg2**: Type 2: Used on Straight Headwalls
- **Rt-Sg3**: Type 3: Used on Flared End Sections and Tapered Headwalls

Note:
1. Do not use erosion control items in a flowing stream or in a tidal area below high tide.
2. For additional information on the design and application of erosion and sediment control, refer to the latest edition of the Georgia Soil and Water Conservation Commission's Manual for Erosion and Sediment Control in Georgia.
1. DO NOT USE EROSION CONTROL ITEMS IN A FLOWING STREAM OR IN A TIDAL AREA BELOW HIGH TIDE.

2. FOR ADDITIONAL INFORMATION ON THE DESIGN AND APPLICATION OF EROSION AND SEDIMENT CONTROL BEST MANAGEMENT PRACTICES (BMPs), REFER TO THE LATEST EDITION OF THE "MANUAL FOR EROSION AND SEDIMENT CONTROL IN GEORGIA" FOR DESIGN CRITERIA.

NOTE:

A TEMPORARY SEDIMENT BASIN SHALL BE EVALUATED PRIOR TO CONSIDERING A TYPICAL SEDIMENT TRAP. A TYPICAL SEDIMENT TRAP IS IDEAL FOR SMALL AREAS WITH NO UNUSUAL DRAINAGE FEATURES AND EFFECTIVE AGAINST CONVERSE, BUT NOT AGAINST SLIP OR CLAY PARTICLES THAT REQUIRE SEDIMENT CORRECTIONS. RECOMMEND TO THE LATEST EDITION OF THE "MANUAL FOR EROSION AND SEDIMENT CONTROL IN GEORGIA" FOR DESIGN CRITERIA.

A TEMPORARY BED WITH POND OUTLET DESIGNED TO STORE ECTIC TRAVERSE OF CONSECUTIVE FLOWS PER DRAINAGE AREA. DRAINAGE AREA SHALL NOT EXCEED 4 ACRES. DISTURBED BY TEMPORARY BED DESIGN OR BY LAKE OF DRAINAGE AREA. TEMPORARY POND DEPTH OR POND TO EMERGENCY SPILLWAY IS 4 FEET.

A TEMPORARY BED SHOULDN'T BE USED ON STREAMS WITH DRAINAGE AREAS GREATER THAN ONE SQUARE MILE, UNLESS SPECIFICALLY DESIGNED TO ACCOMMODATE THE ADDITIONAL DRAINAGE AREA OF THE DESIGN PROFESSIONAL. A CERTIFICATION STATEMENT AND SIGNATURE SHALL ACCOMPANY THE DESIGN.

NOTE:

A TEMPORARY STRUCTURE INSTALLED ACROSS A FLOWING STREAM OR WATERCOURSE WITHOUT MOVING SEDIMENT INTO SUSPENDED. THIS BMP SHOULD NOT BE USED ON STREAMS WITH DRAINAGE AREAS GREATER THAN ONE SQUARE MILE, UNLESS SPECIFICALLY DESIGNED TO ACCOMMODATE THE ADDITIONAL DRAINAGE AREA OF THE DESIGN PROFESSIONAL. A CERTIFICATION STATEMENT AND SIGNATURE SHALL ACCOMPANY THE DESIGN.
Table

<table>
<thead>
<tr>
<th>Code</th>
<th>Practice</th>
<th>STD or Detail Spec. Sect.</th>
<th>Detail</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>Outlet Protection</td>
<td>GA. STA. 166 & 2332</td>
<td></td>
<td>A riprap or box culvert outlet headwall with an apron and dissipator blocks is used to reduce velocity at the outlet of a pipe drain to enforce an existing stream or publicly maintained drainage system. It is used on the outlet of all box culverts and on 48" and larger pipes. May be used on outlets for flowing streams. Use on small pipes when outlet velocity of the 25-year storm is 12 ft/sec and greater.</td>
</tr>
<tr>
<td>ST-R</td>
<td>Outlet Protection (Rip-Rap)</td>
<td>Construction Details D-51, Section 8-5</td>
<td></td>
<td>Riprap outlet protection is used to reduce velocity at the outlet of a pipe, channel, or structure prior to entering an existing stream or publicly maintained drainage system. The minimum design of riprap outlet protection shall be the 25-year storm peak flow. But larger storms are recommended. Typically, riprap at a depth of 36" and placed on filter fabric is preferred for all 48" +/- 1, feet. Type ST-R is at a depth of 18" and placed on filter fabric. It may be used for 45" +/- 0.5 feet. Refer to the latest edition of the "Manual for Erosion and Sediment Control in Georgia" for required design dimensions and other information to be included in the plans.</td>
</tr>
<tr>
<td>SU</td>
<td>Horizontal Sediment Control</td>
<td>Construction Details D-51, Section 8-5</td>
<td></td>
<td>Providing a rough soil surface with horizontal depressions, by operating a cleaved dozer on the slope, in a vertical direction, creating serrated slopes. In the grading process to construct berms will reduce runway velocity and increase infiltration of water. In most cases this BMP is not required to be shown on the plans, but required to be completed by the contractor under all projects. If serrated slopes are specified by the soil survey, then this BMP shall be shown on the plans where serrated slopes are to be used.</td>
</tr>
<tr>
<td>Ty-F</td>
<td>Floating Turbidity Curtain</td>
<td>Construction Internal Pipe</td>
<td></td>
<td>A floating turbidity curtain is used to prevent sediment from moving in water by allowing it to drop out of suspension and remain within the construction area. It is typically used in wetlands or areas where construction is required in a large body of water such as lakes and rivers. It should be used as directed by the engineer. This BMP is only to be used when permitted fill is being placed into a lake, river, or as a supplement to adequately placed perimeter BMP. It may also be referred to as a floating boom, silt barrier, or silt curtain.</td>
</tr>
<tr>
<td>Ty-S</td>
<td>Staked Turbidity Curtain</td>
<td>Construction Internal Pipe</td>
<td></td>
<td>A staked turbidity curtain is used to prevent sediment from moving in water by allowing it to drop out of suspension and remain within the construction area. It is typically used in shallow unconsolidated areas. It may be used to protect a small stream or aquatic ecosystem from the project. It should extend to the bottom of streambeds. The height should be limited to 2 feet unless directed and extend 2 feet above normal water elevation. It should be used as directed by the engineer. This BMP is only to be used when permitted fill is being placed into a lake, river, or as a supplement to adequately placed perimeter BMP. It may be referred to as a silt barrier or silt curtain.</td>
</tr>
</tbody>
</table>

Note:

1. Do not use erosion control items in a flowing stream or in a tidal area below tidal tide.
2. For additional information on the design and application of erosion and sediment control best management practices (BMPs), refer to the latest edition of the Georgia Soil and Water Conservation Commission's, "Manual for Erosion and Sediment Control in Georgia."
GSWCC LEVEL II # 0000071642

| OUTLET NO. | OUTLET STRUCTURE | AREA CONTRIBUTED | LOCATION | DESCRIBING DIAMETER | PIN | (-) CS | (+) CS | PIN | (-) CS | (+) CS | PIN | (-) CS | (+) CS | APD | SLOPE | REMARKS FOR G
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>SPILLWAY 3-20 IN</td>
<td>7</td>
<td>MOUNT CREEK</td>
<td>700 316.65 19 04 54</td>
<td>0.67</td>
</tr>
<tr>
<td>C</td>
<td>SPILLWAY 3-20 IN</td>
<td>2</td>
<td>MOUNT CREEK</td>
<td>700 316.65 19 04 54</td>
<td>0.67</td>
</tr>
<tr>
<td>D</td>
<td>12" PIPE</td>
<td>3</td>
<td>MOUNT CREEK</td>
<td>700 316.65 19 04 54</td>
<td>0.67</td>
</tr>
<tr>
<td>E</td>
<td>18" PIPE</td>
<td>4</td>
<td>MOUNT CREEK</td>
<td>700 316.65 19 04 54</td>
<td>0.67</td>
</tr>
<tr>
<td>F</td>
<td>24" PIPE</td>
<td>5</td>
<td>MOUNT CREEK</td>
<td>700 316.65 19 04 54</td>
<td>0.67</td>
</tr>
<tr>
<td>G</td>
<td>18" PIPE</td>
<td>6</td>
<td>MOUNT CREEK</td>
<td>700 316.65 19 04 54</td>
<td>0.67</td>
</tr>
<tr>
<td>H</td>
<td>SPILLWAY 3-20 IN</td>
<td>7</td>
<td>MOUNT CREEK</td>
<td>700 316.65 19 04 54</td>
<td>0.67</td>
</tr>
</tbody>
</table>

DRAINAGE AREA
- SPILLWAY: 0.35
- DITCH DRAIN: 0.45
- 42" PIPE: 2.70
- 72" PIPE: 1.00
- 52" PIPE: 1.00
- DITCH DRAIN: 0.57
- 42" PIPE: 0.45
- 42" PIPE: 0.45
- SPILLWAY: 0.88

TOTAL DISTURBED AREA - 5.5 ACRES
TOTAL PROJECT SIZE - 13.25 ACRES

ROCKDALE COUNTY
DEPARTMENT OF TRANSPORTATION
EROSION CONTROL
DRAINAGE AREA MAP
ALONGKIN ROAD WILL NOT HAVE MOUNT RD INTERSECTION (IMPROVEMENT)

3-0071

[Scale: 1" = 200']
LIMIT OF CONSTRUCTION, MATERIAL WILL NO
BE
35'6" H. 900'
2 35'0" H. 900'
EXIST W/IX
12' EXIST, CROSS SLOPE

ASA - See Environmental
Resourcens Impact Table
In General Notes For
construction restrictions.

EXIST R/W
EXIST R/W

SEE DMG 54-005' 1NB

MATCH LINE 59+00' NB

SCALE IN FEET

DATE

REVISED

DEPARTMENT OF TRANSPORTATION

ROCKDALE COUNTY

FINAL PHASE

BMP LOCATION DETAILS
ADJACENT HIGHWAY NO. WILL NOT
INTERSECT ROAD INTERSECTION (IMPROVEMENT)

54-0055
SINGLE ROW TYPE C SILT FENCE WITH POLYPROPYLENE MESH SUPPORT

<table>
<thead>
<tr>
<th>FENCE TYPE</th>
<th>POST LENGTH</th>
<th>H</th>
<th>D</th>
<th>W</th>
<th>TYPICAL USES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE 'A'</td>
<td>4 FT.</td>
<td>2'-6"</td>
<td>1'-6"</td>
<td>3'-2"</td>
<td>AT BRIDGE END ROLL'S, DOUBLE ROW ALONG STREAMS, WELLS, AND ENVIRONMENTALLY DELI</td>
</tr>
<tr>
<td>TYPE 'C'</td>
<td>4 FT.</td>
<td>2'-4"</td>
<td>1'-4"</td>
<td>7'-0"</td>
<td>RATED AREAS. SEE SYM. 110-x-c.</td>
</tr>
</tbody>
</table>

NOTES:

1. WIRE STAPLES SHALL BE AT LEAST 12 GAUGE, WITH NAILS AT LEAST 0 1/4 INCHES LONG AND 6 CROWN AT LEAST 1/4 INCHES WIDE.
2. NAILS OR STAPLES SHALL BE EVENLY PLACED WITH AT LEAST 5 PER POST FOR TYPE 'A' FENCE AND 4 PER POST FOR TYPE 'C' FENCE.
3. THE VERTICAL WIRES FOR THE WOVEN WIRE SUPPORT FENCE SHALL HAVE A MINIMUM SPACING OF 12 INCHES. THE TOP AND BOTTOM WIRES SHALL BE AT LEAST 12 GAUGE AND ALL OTHER WIRES SHALL BE AT LEAST 10 GAUGE.
4. TEMPORARY SILT FENCE INSTALLATION IS DIFFERENT THAN THE SILT RETENTION BARRIER INSTALLATION.
5. SEE SECTION 110-x FOR FENCING SPECIFICATIONS.
6. SEE SYM. 110-x-a FOR A LIST APPROVED SILT FENCE FABRIC.
7. TEMPORARY SILT FENCE SHALL NOT BE PLACED WITHIN STATE WATERS UNLESS PERMITTED.
NOTES:

1. FABRIC CHECK DAMS MAY BE USED FOR FLOWS UP TO 2.0-CFS. A ROCK FILTER DAM SHALL BE USED AT THE DOWNSTREAM POINT FOR FLOWS GREATER THAN 2.0-CFS.

2. FABRIC CHECK DAMS SHALL NOT BE PLACED WITHIN FLOWING STATE WATERS.

3. FABRIC CHECK DAMS MAY BE USED IN DITCHES WITH DEPTHS AT LEAST 26-IN. IF DITCH DEPTH IS LESS THAN 26-IN, THE WIER INVERT MAY BE LOWERED SLIGHTLY IN THE FIELD TO PROVIDE 6-IN MINIMUM FREEBOARD ABOVE POINT-A OR TO MATCH SPACING OF WIER SUPPORT, THE WIER HEIGHT SHALL BE NO LESS THAN 15-IN. THE DESIGNEE SHALL CONSIDER OTHER APPROPRIATE BMPs FOR CONCENTRATED FLOW FOR DITCH DEPTHS LESS THAN 26-IN.

4. THE FOLLOWING STEPS ARE RECOMMENDED FOR PROPER FABRIC CHECK DAM INSTALLATION:
 A) DETERMINE DITCH CENTERLINE AND USE A LINE LEVEL OR OTHER MEANS TO FIND POINT-B WITHIN THE DITCH FORESLOPE AND BACKSLOPE TO PROVIDE 6-IN MINIMUM FREEBOARD ABOVE POINT-A.
 B) CREATE TRENCH 6-IN BELOW DITCH GRADE TO FIT LAYOUT FROM STEP-A WITH MINIMAL SOIL DISTURBANCE.
 C) LAYOUT TURF REINFORCEMENT MATTING TYPE-C TO PROVIDE PROTECTION A MINIMUM LENGTH OF 8-FT DOWNSTREAM OF CENTER POST TO FUNCTION AS A SPLASH PAD TO PREVENT SLOWING. AN ADDITIONAL NECESSARY TRIM SHALL BE OVERLAPPED 5-FT; THE WIDTH SHALL BE THE DISTANCE BETWEEN POINT-B ON THE DITCH FORESLOPE AND POINT-B ON BACKSLOPE.
 D) INSTALL FENCE POSTS THROUGH TRIM WITHIN TRENCH, CENTER POST AND POSTS WITHIN WIER AREA SHALL BE INSTALLED FLUSH WITH REIR, CUT TRIM WITHIN TRENCH FOLLOWING CHECK DAM LAYOUT AND SAVE UPSTREAM PORTION OF TRIM FOR FURTHER USE.
 E) PROPERLY INSTALL TYPE-C SILT FENCE, TRENCH BACKFILL SHALL BE COMPACTED WITH A HAND TAMPER, JUMPING JACK COMPACTOR, OR PLATE COMPACTOR TO PREVENT UNDERMINING.
 F) INSTALL PREVIOUSLY CUT TRIM FROM STEP-D UPSTREAM AGAINST CHECK DAM, INSTALLING UPSTREAM AND DOWNSTREAM TRIM ACCORDING TO DETAIL D-35 FOR THIS TEMPORARY APPLICATION IS NOT REQUIRED, HOWEVER, TRIM SHALL HAVE PROPER CONTACT WITH GROUND SURFACE, ANCHORED 6-IN MAXIMUM SPACING ALONG THE EDGES AND ADEQUATELY WITHIN THE MATTED AREA.

5. TEMPORARY INSTALLATION OF TRIM WITH FABRIC CHECK DAMS SHALL BE INCLUDED IN THE LINEAR COST OF THE CONSTRUCTION, REMOVAL, AND MAINTENANCE OF EACH FABRIC CHECK DAM. NO ADDITIONAL PAYMENT WILL BE MADE.

PAY ITEMS:
163-0204 CONSTRUCT & REMOVE FABRIC CHECK DAM, TYPE-C SILT FENCE (LF)
163-0001 MAINTENANCE OF CHECK DAMS - ALL TYPES (LF)
GENERAL NOTES:

1. Avoid locating construction exits on steep grades or at sharp curves on public roads; construction exits are not required for dirt public roads.
2. Remove all vegetation and other unsuitable material from the foundation area and grade for proper drainage.
3. Aggregate size shall be coarse No. 3 aggregate with size passing the No. 4 sieve, standard size.
4. Gravel pad shall have a minimum thickness of 6 inches and placed on approved plastic filter fabric.
5. Gravel pad width shall be equal full width at all points of vehicular access, but no less than 20 feet.
6. Provide a wash area segment trap constructed of aggregate 6 inches to 8 inches deep when grade toward paved area is greater than 2.0.
7. Install centroid under the drain if needed to maintain drain operation.
8. If the center of the vehicle traversing over the gravel pad does not sufficiently remove the mud from entering the public road, the contractor shall add a construction exit wash assembly to an existing construction exit when directed by the designer. The wash assembly includes the wash area, water source, and sediment trap or other acceptable sediment storage device.
9. Aggregate shall be kept loose or scarped when aggregate becomes consolidated.
10. Construction exit shall be maintained in a condition that prevents tracking and/or flow of mud onto public streets or roads. The wash assembly shall be cleaned and/or washed out of any materials used to trap sediment. Maintenance of construction exit will be paid on the basis of having or not having a construction exit. The wash assembly shall be maintained by the contractor. All mud and debris shall be removed, washed, or tracked from vehicles and put into storm drains. Mud shall be removed manually, by equipment suitable for truck traffic, that removes mud and dirt.

STATE OF GEORGIA

DEPARTMENT OF TRANSPORTATION

CONSTRUCTION DETAILS

CONSTRUCTION EXIT

NO SCALE

FEBRUARY 2008

NUMBER

D-41
BAFFLE BOX (Sd2-B)

PLAN

- Baffle box shall be constructed of 2"x4" treated timber spaced a maximum of 2" apart or of plywood with keep hole 2" in diameter placed approximately 6" on center vertically and horizontally.

- Gravel shall be placed outside the box, all around the inlet, to a depth of 2 to 4 inches. The entire box shall be wrapped in type C filter fabric that shall be entrapped under the 12 inches of backfilling.

ELEVATION

- 2"x4" treated timber spaced at 4" max. see notes.
- 4"x4" treated wood post
- 3'x3' (3'x3' high)
- 8" MIN

Notes:

- #5 Stone
- Type C filter fabric attached to all sides
- 4"x4" treated wood posts
- 2"x4" treated timber interior bracing
- 2' MIN

DEPARTMENT OF TRANSPORTATION

STATE OF GEORGIA

CONSTRUCTION DETAIL

INLET SEDIMENT TRAPS

BAFFLE BOX Sd2-B

BLOCK AND GRAVEL DROP INLET PROTECTION Sd2-Bg

GRAVEL DROP INLET PROTECTION (GRAVEL DONUT) Sd2-G

Basis of Payment:

Construct and remove inlet sediment trap ______ EACH

NO SCALE

MAY 2008

NUMBER

D-42
Metal Filter Fabric Staple

Section A-A

5" min. staple

Woven Plastic Filter Fabric

No. 20 wire

Any drains or ditches or adversely affect upstream property or state waters with backwater of 5-inches lesser than the outer edges of the rock filter dam at the channel banks.

Surface with metal filter fabric staples 5-inches from the edge and no greater than 6-inches apart.

If the rock filter dam, woven plastic filter fabric shall be replaced when damaged or deteriorated.
SOD LAYOUT

GENERAL NOTES:
1. SOD SHALL BE BROKEN INTO SQUARE BLOCKS OR SQUARE ROLLS.
2. PLACE SOD IN A STRAIGHTENED PATTERN ENSURING TOTAL CONTACT WITH THE SOIL. BUTT THE
 STIPS TIGHTLY TOGETHER EACH OTHER WITH THE ADJACENT SOD CUTTER EDGE CORRECTLY
 WATTHED AND OVERLAP.
3. PLACE THE LONG SIDE OF SOD PERPENDICULAR TO DRAINAGE FLOW IF INSTALLED IN DITCHES.
4. SOD PLACED IN DITCHES OR SLOPES STEEPER THAN 30% ANY OTHER AREA WHERE
 SOD SLIPPING MAY OCCUR, THE WOOD STAKES SHALL BE PLACED AT 12" INTERVALS AND A
 MAXIMUM OF 4' ON A LINE. SOME STAKES SHALL BE PLACED ON THE TOP OF SOD AND USE A WOODEN
 STAKE PER SQUARE YARD TO HOLD SOD IN PLACE.
5. INSTALL SOD IMMEDIATELY TO ACHIEVE TIMELY CONTACT WITH THE SOIL.
6. WATER THE SOD IMMEDIATELY AFTER INSTALLATION AND WATER AT A DEPTH OF 4" AS NEEDED.
7. MONITORED SOD TO A HEIGHT NOT LESS THAN 2'-3" AS NEEDED.

ABUTTING SOD

INCORRECT BUTTING

CORRECT BUTTING

SOD APPEARANCE

GRASS SHOULD BE GREEN, HEALTHY, AND
MOWED AT A 2" H. CUTTING HEIGHT.

DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

CONSTRUCTION DETAILS

SOD INSTALLATION

NO SCALE

4-22-2016

D-54