On-Site Wastewater Management Systems

Don Loggins
Environmental Health Section
Rockdale County Board of Health
Ph: 770-785-5948
dwloggins@dhr.state.ga.us
Why On-Site Systems?

Historically
- Simple wastewater management “system” in rural areas
- Simple sewer in cities
 - Pipes and ditches to streams
 - Limited treatment

Today
- Will the sewer come?
- Maybe, but probably not soon
 - Cost
 - Time to build
 - Potential environmental degradation
- On-site systems are a permanent solution for household wastewater
 - Relatively cheap
 - Environmentally benign if properly sited, installed, and maintained

On-site systems are equally effective as sewer
- Technology improvements
- Increased regulation
A Few Facts

- 25% of homes in the U.S. use on-site systems
 - 40+% in Georgia
 - 75% of new homes
 - 50,000+ systems installed annually

- Rockdale has approximately 20,000 systems installed

- Compare this to one of our neighbors, Gwinnett, they have approximately 100,000 systems installed
Function of On-Site System

- Distribute wastewater from the home into the soil
- Renovate the wastewater
 - Immobilize inorganic constituents
 - Dilute concentrations of mobile constituents
 - Dilution is the solution to pollution
 - Decompose organic components
 - Disinfect the wastewater
 - Immobilize, remove, or disable pathogens
Household Wastewater

• Waste generated in the home includes that from the toilet, bath, kitchen, and laundry.
• On-site systems designed for 150 gal/bedroom/day
• Water conservation is important to longevity and performance of a system
On-Site System Components

Diagram showing components of an on-site system, including:
- House
- Septic tank
- Dispersal system
- Percolation
- Evapotranspiration
- No restrictive horizon
- Ground water mound/parched water table
- Bedrock or impermeable soil layer
- Restrictive horizon
- Seep
- Runoff to lakes and streams
- To wells, springs, and base flow

Additional notation: Green箭头 indicates ground water flow.
Function of Components

- Septic tank
 - Removal of large solids
 - Limited organic decomposition
 - Protect absorption field from clogging

- Absorption field
 - Distribute wastewater into the soil

- Soil
 - Transmit wastewater from absorption field to ground or surface water
 - Renovate wastewater
Septic Tank

1,000 to 1,500 water tight tank (concrete, polyethylene, other)
Collect large solids
Limited decomposition of organic material (about 30% does not decompose)
Pictures of a concrete septic tank and a plastic septic tank
Advanced Treatment Systems

- Similar to secondary treatment at waste treatment plant
 - Aerobic treatment to lower BOD and suspended solids
- Used to overcome soil and site limitations
- Should extend life of system
 - Reduced solids to clog soil pores
- Additional maintenance requirements
 - Pumps, timers, and valves
 - Contract service
- Additional expense
Absorption Field

System to distribute wastewater from the septic tank into the soil
Pipe and gravel
Numerous other technologies
Pictures of absorption fields
Soil

The treatment media: Natural processes purify wastewater
Will an on-site system fail?

Yes!!!!

- But the waste treatment plant may also fail without proper design, installation, and maintenance
- Proper design, installation, and maintenance are the keys to long-term success of either system
On-Site System Failure

- Partially treated wastewater rising to the soil surface
 - Health hazard
 - Odor
 - Overland flow to surface water?
- Wastewater backs up into house
- Inadequate treatment before entering groundwater
 - Commonly not considered - “If toilet will flush, the system is working”
Common Causes of Early Failure

- Unsuitable soils
 - Slow perc rates
 - Seasonal water tables
 - Shallow rock
 - Water restrictive soil horizons

- Construction faults
 - System not at proper grade
 - Damaged components
 - System inspection should discover these

- Site water management
 - Gutter downspouts
 - Runoff from paved areas and/or upslope areas
Soil and Installation Problems are Being Addressed

- Soils at site must be evaluated by certified soil classifier, PE, or PG
- Contractor certification
- Installation inspections
- Homebuilder certification?
- Lists of certified on-site system contractors available from County Health Department (Environmental Section)
Common Causes of Longer-term Failure

- Under-designed system
 - Bedroom addition
 - Abnormally high water use
 - Leaky plumbing
- Lack of homeowner understanding and maintenance
- Nothing lasts forever
 - Properly sited, sized, and maintained system should last 20-30+ years
Extending Life of On-Site System

- Water Conservation
- Graywater Separation
- Reduce Contaminate Loads in Wastewater
Reduce Water Use
(or at least be aware of amount used)

- Dishwasher, 1%
- Leaks, 16%
- Faucets, 18%
- Shower, 19%
- Toilet, 21%
- Laundry, 25%
Water Conservation

- First step is to fix leaks
 - Leaking toilet can add 10-50 gpd to on-site system
- Use water saving fixtures
- Wash only full loads in the dishwasher and washing machine
- Don’t allow faucets to run while completing task
- Reduce water pressure
Graywater Separation

- Separation of wastewater from sinks, showers, and laundry (graywater; 65%) from toilet and kitchen waste (blackwater)
 - Separate management systems
- Surface discharge of graywater (sprinkler system) prohibited in GA
 - Contains appreciable concentrations of bacteria and potential pathogens
 - Regulations may change in the future
 - 2008 “hand watering” with graywater allowed
Reduce Contaminant Loads in Wastewater

- Do not dispose of household waste (cleaners, cosmetics, pesticides, preservatives, etc.) by flushing down the toilet or sink
 - May contaminate water and/or
 - Upset biological treatment processes

- Do not
 - Use “every flush” toilet bowl cleaners
 - Flush unwanted medicines down toilet
 - Drain chlorine-treated water into on-site systems

- Use recommended amounts of cleaners, bleach, detergents, drain cleaners, etc.

- Minimize use of garbage disposal
 - Increased amounts of fats and oils
 - Increased solids
Additives

- Have not been shown conclusively to enhance on-site system performance and are not generally recommended.
- Household waste contains large numbers and many types of microorganisms, enzymes, and other biological substances.
 - Amount added is minor.
- Enhanced decomposition may result in abnormal amounts of suspended solids added to drainfield.
 - Clog soil pores and cause hydraulic failure.
Untrained and often uninformed system owners assume responsibility for operation and maintenance

- “I have sewer at my house”

Two components of conventional on-site system maintenance

- Pump septic tank
 - Every 3-5 years
 - Wastewater residence time in tank
 - Minimizes addition of solids to drainfield and soil clogging

- Inspection
 - Wastewater on soil surface during the wet season and/or periods of high use

Do not ignore problems
How to Choose an On-Site Contractor

- Ask friends and co-workers for references
- Contact the Environmental Health Department to learn how to obtain a list of licensed contractors
- Consult the Better Business Bureau for complaints
- Investigate both independent contractors as well as large companies
- Gain working knowledge of an on-site system and your current on-site system
- Obtain an on-site permit
The Future?

- Increased use of advanced treatment systems
 - Enhanced nitrogen and phosphorus removal
 - Disinfection systems?

- Mandatory maintenance and periodic inspection
 - Used in many states and a few areas of GA
 - Government
 - Private
 - Warrantees?
Summary

On-site sewage management systems are an economical and environmentally benign alternative to centralized waste treatment if

- soils are favorable,
- the system is suitable for the site and properly installed, and
- the system is properly and regularly maintained

Maintenance is the key

- Simple, but it must be done

New technologies are becoming available to improve performance
Additional Information Sources

www.rockdalehealth.com

www.georgiaeh.us